
Presented at STRATA 2003, Rome, Italy, September 8, 2003

Developing Strategies for Specialized Theorem
Proving about Untimed, Timed, and Hybrid I/O

Automata ?

Sayan Mitra1 and Myla Archer2

1 MIT Laboratory for Computer Science,
200 Technology Square, Cambridge, MA 02139

mitras@theory.lcs.mit.edu,
2 Code 5546, Naval Research Laboratory,

Washington, DC 20375
archer@itd.nrl.navy.mil

Abstract. In this paper we discuss how we intend to develop a special-
ized theorem proving environment for the Hybrid I/O Automata (HIOA)
framework [7] over the PVS [11] theorem prover, and some of the issues
involved. In particular, we describe approaches to using PVS that allow
and encourage the development of useful proof strategies, and note some
desired PVS features that would further help us to do so for our HIOA
environment.

1 Introduction

Interest in specialized theorem proving environments has emerged from various
application domains [3, 4, 6, 1]. A major motivation for developing such environ-
ments is to relieve the developers and veri�cation engineers from mastering the
speci�cation language and the proof commands of a general theorem prover.
Specialized environments also help expert users of theorem provers by replacing
repetitive proof patterns with strategies, and by making it possible to generate
human readable proofs.

We plan to develop a specialized theorem proving environment to be used
with the Hybrid I/O Automata (HIOA) framework. HIOA is a very general
framework for modeling systems with both discrete and continuous behavior,
and subsumes both the timed and untimed I/O automata models. Therefore,
any strategies and metatheories for HIOA would be applicable to timed and un-
timed I/O automata as well. A theory template for specifying HIOAs has been
presented in [9]. This formalization of HIOA in PVS is similar to the formaliza-
tion of Lynch-Vaandrager (LV) timed automaton [8] in the Timed Automaton
Modeling Environment (TAME) [1]. However, important di�erences arise in the
two formalizations because LV-timed automata communicate via shared actions
alone, whereas HIOAs also communicate via shared variables. Therefore, the evo-
lution of continuous variables is modeled in TAME using time passage actions to

? Funding for this research has been provided by ONR

1

capture cumulative changes over an interval, while in the HIOA model, the evo-
lution of the continuous state variables over time is modeled using trajectories.
Our HIOA environment must allow for these di�erences.

The rest of this paper is organized as follows: In Section 2 we discuss the
main types of proofs which will be supported by our HIOA environment and the
design issues involved in developing proof strategies for each type. In Section 3
we suggest certain new features of PVS which would aid the development of
strategies for PVS. Finally, we summarize and conclude in Section 4.

2 Supported Proof Types

Apart from simplifying direct proofs of properties, the HIOA proving environ-
ment will provide special strategies for mechanizing inductive invariant proofs
and abstraction (e.g., simulation) proofs for timed, hybrid and untimed I/O
automata. Apart from TAME, another theorem proving environment has been
developed, based on Isabelle, which mechanizes invariant proofs for I/O au-
tomata [10]. In [2], the authors present a simulation proof of a leader election
protocol in PVS. However, we have not come across any work which addresses
the development of strategies for mechanizing simulation proofs.

2.1 Inductive Proofs

The approach we intend to take for supporting inductive invariant proofs is
derived from the Timed Automaton Modeling Environment (TAME) [1]. As
in TAME, we will develop a parameterized theory machine which de�nes the
reachable states of an automaton in terms of its states, initial states, actions
and (in case of hybrid I/O automata) activities [9]. This theory will also estab-
lish the theorem that allows proving invariants inductively. We will also develop
a general theory template which can be instantiated with particular state vari-
ables and actions (optionally, activities) to obtain an automatonName decls

theory describing the automaton. The automatonName decls theory will im-
port an instance of the theory machine with the declared states and actions
as parameters. Instantiation of the theory machine de�nes reachability and the
induction theorem for the particular automaton. All the invariants and the asso-
ciated lemmas of an automaton will be collected and proved in a theory named
automatonName inv.

The advantages of this (TAME) approach are as follows: (1) It is possible to
write generic strategies which work for all automata speci�ed using the template.
The strategies for induction are tailored for the de�ned automaton template,
and are de�ned in the �le pvs-strategies. Therefore, (2) the user can use the
specialized environment from within the PVS system. Finally, (3) it is easy to
generate human readable proofs using the generic strategies, provided that the
strategies implement proof steps meaningful to humans.

A slightly di�erent approach has been taken by the developers of DisCo [6,
5], where the PVS speci�cation of the automaton is processed by a \generator"

2

to produce the proof scripts. One advantage of this approach, due to the clearly
de�ned interface between the theorem prover (PVS) and the specialized environ-
ment (DisCo), is that the generated proof scripts are relatively insensitive to the
modi�cations of the internals of theorem prover commands and data structures.

However, we would like our strategies to be directly applicable to all automata
speci�ed with our template theory. The success of our approach does depend
on access to the data-structures in the proof state maintained by PVS, and
the consistency of the behavior of PVS proof commands. We discuss the PVS
support necessary to achieve this in Section 3.

2.2 Abstraction Proofs

Given automata A and C, it is often useful for the purposes of veri�cation to
show that there exists an abstraction relation between them. Several kinds of
abstraction relation, e.g., homomorphism, re�nement, forward and backward
simulation, etc., are described in the literature, and there may also be other
such relations of interest.

Abstraction proofs can be performed directly by specifying both automata
A and C, and the abstraction relation between them, within the same PVS the-
ory. However, this approach makes it di�cult to construct generic strategies for
automating the proofs, and to use invariants which have been proved separately
for the individual automata.

Instead, we intend to make use of PVS support for theory parameters, as fol-
lows. Two parameters A and C of the type automaton theory (Figure 1) can be
passed as parameters to the theory abstraction (Figure 2), which also takes the
abstraction relation absrel and the action map actmap as parameters. The the-

automaton: THEORY

BEGIN

actions : TYPE+;

stutter: actions;

visible (a:actions) : bool;

states : TYPE+;

start (s:states) : bool;

enabled (a:actions, s:states) : bool;

trans (a:actions, s:states) : states;

stutter_trans_ax: AXIOM (FORALL (s:states): (trans(stutter,s) = s));

stutter_enabled_ax: AXIOM (FORALL (s:states): (enabled(stutter,s)));

reachable (s:states) : bool;

equivalent (s1, s2: states) : bool;

END automaton

Fig. 1. The automaton abstract theory

3

ory abstraction, which somewhat resembles the theory group homomorphism

in [12] for setting up proofs of homomorphism between groups, de�nes the ab-
straction relations between the two interpretations of the automaton theory. To
pass actual theory parameters to group homomorphism, the various elements of
the group theories must be named: the members of the groups, identities and
composition operators, etc. But, when individual automata follow the same nam-
ing conventions as in the theory automaton, a shortcut is in principle possible in
passing actual theory parameters to abstraction: because the various elements
of the actual parameters can be matched to the formal parameters syntactically,
only the actual theory names need to be provided. A modi�cation to PVS that
will allow this shortcut is under construction at SRI.

abstraction [A, C: automaton,

actmap: [C.actions -> A.actions],

absrel: [C.states, A.states -> bool]] : THEORY

BEGIN

a_C : VAR C.actions;

a_A : VAR A.actions;

s_C, s1_C, s2_C: VAR C.states;

s_A : VAR A.states;

vis_ax: AXOIM

(FORALL a_C: C.visible(a_C) => A.visible(actmap(a_C)));

invis_ax: AXIOM

(FORALL a_C: NOT(C.visible(a_C)) => (actmap(a_C) = A.stutter));

weak_refinement_base : bool =

(FORALL s_C, s_A:

C.start(s_C) & absrel(s_C, s_A)

=> A.start(s_A));

weak_refinement_step : bool =

(FORALL s_C, s1_C, a_C, s_A:

C.reachable(s_C) &

C.equivalent(s_C, s1_C) & C.visible(a_C) & C.enabled(a_C, s1_C) &

A.reachable(s_A) &

absrel(s1_C, s_A)

=> A.enabled(actmap(a_C), s_A) &

(EXISTS (s2_C: C.states):

C.equivalent(C.trans(a_C, s1_C), s2_C) &

absrel(s2_C, A.trans(actmap(a_C), s_A))));

weak_refinement : bool = weak_refinement_base & weak_refinement_step;

END abstraction

Fig. 2. The abstraction theory

4

The actmap relation in the theory abstraction maps an action of the con-
crete automaton C to an action of the abstract automaton A. The axioms vis ax

and invis ax that indicate that the visible actions in C map to visible actions in
A and invisible (i.e., internal) actions in C map to the stutter step in A, become
proof obligations when abstraction is instantiated. At the same time, the ax-
ioms stutter trans ax and stutter enabled ax from the theory automaton

will become proof obligations with respect to both automaton theory instances.
For abstraction proofs the theory abstraction assumes a role analogous

to that of the theory machine in the case of induction proofs, in that it will
de�ne the abstraction relations and also establish the theorems (e.g., concerning
trace inclusion) that are the consequences of the existence of such relations
between pairs of automata. In Figure 2, only one sort of re�nement relation has
been de�ned; in practice, the theory abstraction will de�ne all possible useful
abstraction relations between the two automata. The theory abstraction will
thus provide us with a starting point for developing generic strategies for proving
abstraction relations.

3 PVS Support

In this section we suggest some PVS features which would be helpful for writing
strategies, particularly for the above types of proofs.

1. Naming in theory interpretations. The abstraction proofs involve many
related theories, for example di�erent instances of automatonName decl,
automatonName inv, machine, etc. It is di�cult to write general strate-
gies that involve formulas or de�nitions in multiple theories: the user often
has to identify the particular theory instances explicitly. It would be useful
for strategy writers if PVS provided well documented naming conventions
and functions for determining theory instances associated with names, and
supported the automatic context-based selection by user strategies of appro-
priate theory instances for names.

2. Functions to access information in speci�cation and in proof states.

A strategy often depends on the nature of the automaton speci�cation. It
can also make choices based on the current proof state. The CLOS structure
used by PVS provides functions to access various slots of the current proof
state object. However, these are not guaranteed to be �xed, and indeed can
sometimes change dynamically. For writing strategies it would be helpful
if functions to access the de�nitions in a particular theory|for example
the invariance lemmas or the action de�nitions|and functions for accessing
parts of a sequent, formulae, etc., were provided as a part of a PVS strategy
language.

3. Documentation of implementation details in PVS proof commands.

The LISP/CLOS functions used in writing the internal PVS strategies (e.g.,
induct) are not well documented. Many of these functions, for example
typep, tc-eq, can be useful for writing new strategies. Therefore, proper

5

documentation of these functions would save e�ort and help new strategy
writers learn the art.

4. Improved support for maintaining compatibility with PVS. The ef-
fects of some basic PVS commands (e.g. SKOLEM, EXPAND) have altered over
PVS versions owing largely to changes in PVS's decision procedures and their
use in conjunction with such basic steps. As a result, strategies developed for
older versions of PVS do not always work in the newer PVS versions. There-
fore, it is highly desirable to provide a feature in future versions of PVS that
would allow strategies to invoke prover commands and get the same result
as in some speci�ed previous version. Because most changes in e�ects appear
to involve the decision procedures and their hidden uses, there should at the
very least be optional versions of proof steps that decouple them from any
use of these procedures.

4 Conclusions

Domain speci�c theorem proving is a practical means for harnessing the power
of mechanical theorem provers for system design and analysis. In this paper
we have outlined design principles for the development of proof strategies of
a specialized theorem proving environment for hybrid I/O automata based on
PVS. Our aim is to make the more complex component of the environment|the
proof strategies|generic, based on a speci�c HIOA template, leaving the simpler
component|the speci�cation|to be written by instantiating the template. We
have outlined the support we believe would help us develop e�ective generic
strategies.

Acknowledgements

We wish to thank John Rushby and Natarajan Shankar of SRI for helpful discus-
sions about our plans for a framework supporting generic strategies for abstrac-
tion relations between automata. We thank Sam Owre and Natarajan Shankar
for undertaking enhancements to PVS that will support our plans. We also thank
Nancy Lynch of MIT for helpful discussions and her comments about the design
of the speci�cation language for HIOA.

References

1. Myla Archer. TAME: PVS Strategies for special purpose theorem proving. Annals
of Mathematics and Arti�cial Intelligence, 29(1/4), February 2001.

2. M. Devillers, D. Gri�oen, J. Romijn, and F. Vaandrager. Veri�cation of a leader
election protocol|formal methods applied to IEEE 1394. Formal Methods in Sys-
tem Design, 16(3):307{320, June 2000.

3. Urban Engberg. Reasoning in the Temporal Logic of Actions - The Design and
Implementation of an Interactive Computer System. PhD thesis, University of
Aarhus, Denmark, 1995.

6

4. S. Kalvala. A Formulation of TLA in Isabelle. In E.T. Schubert, P.J. Windley, and
J. Alves-Foss, editors, 8th International Workshop on Higher Order Logic Theorem
Proving and its Applications, volume 971, pages 214{228, Aspen Grove, Utah, USA,
1995. Springer-Verlag.

5. Pertti Kellom�aki. Mechanizing invariant proofs of joint action systems. In Pro-
ceedings of the Fourth Symposium on Programming Languages and Software Tools,
pages 141{152, Visegrad, Hungary, June 1995.

6. Pertti Kellom�aki. Mechanical veri�cation of DisCo speci�cations. In Israeli-Finnish
Binational Symposium on Speci�cation, Development, and Veri�cation of Concur-
rent Systems, Technion, Haifa, January 1996.

7. Nancy Lynch, Roberto Segala, and Frits Vaandraager. Hybrid I/O automata. To
appear in Information and Computation. Also, Technical Report MIT-LCS-TR-
827d, MIT Laboratory for Computer Science Technical Report, Cambridge, MA
02139, January 13, 2003.
theory.lcs.mit.edu/tds/papers/Lynch/HIOA-final.ps.

8. Nancy Lynch and Frits Vaandrager. Forward and backward simulations - part ii:
Timing-based systiems. Information and Computation, 128(1):1{25, July 1996.

9. Sayan Mitra. HIOA+: Speci�cation language and proof tools for hybrid
systems, 2003. Submitted for publication, http://theory.lcs.mit.edu/ mi-
tras/research/LCPTHIOA.ps.

10. Olaf M�uller. A Veri�cation Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, Technische Universit�at M�unchen, Sept. 1998.

11. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
speci�cation, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Veri�cation, CAV '96, number 1102 in Lecture
Notes in Computer Science, pages 411{414, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

12. S. Owre and N. Shankar. Theory interpretations in PVS. Technical report, Com-
puter Science Lab., SRI Intl., Menlo Park, CA, 2001.

7

